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_We-study the initial value problem for a nonlinear hyperbolic Volterra

equation which models the motion of an unbounded viscoelastic bar. Under
physically motivated assumptions, we establish the existence of a unique,
globally defined, classical solution provided the initial data are

They
sufficiently smooth and small. we’ also discuss boundedness and asymptotic
The: -

behavior. ~OUr analysis is based on energy estimates in conjunction with

properties of strongly positive definite kernels.
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SIGNIFICANCE AND EXPLANATION

We study the initial value problem for a nonlinear integrodifferential
equation of Volterra type which models the motion of an unbounded viscoelastic
bar. If the kernel in the integral term vanishes identically (which
corresponds to the case of an elastic bar), the equation reduces to an
undamped quasilinear wave equation which does not generally have globally
defined smooth solutions - no matter how smooth and small the initial data are
~ due to the formation of shock waves. Under physically natural assumptions
on the kernel (which exclude the trivial case), the integral term has a
damping effect and prevents the development of shocks if the initial data and
forcing function are suitably small.

We here establish the existence of a unique, globally defined, classical
solution provided the given data are sufficiently smooth and small. Moreover,
we show that first and second order partial derivatives of the solution decay
to zero uniformly as time tends to infinity. Analogous results are already
known for bounded bars with appropriate boundary conditions, but the proofs
make cruclal use of certain Poincaré inequalities which are not valid for an
unbounded bar. As far as local existence of solutions is concerned, it is
easy to circumvent this difficulty. However, some substantial modifications
are needed to show that local solutions can be continued globally. Our
analysis is based on energy estimates in conjunction with properties of

Volterra integral kernels.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.




THE CAUCHY PROBLEM IN ONE-DIMENSIONAL NONLINEAR VISCOELASTICITY

We Jo Hrusa"z and J. A. Nohel1

1. Introduction

The aim of this paper is to establish global existence and decay of classical

solutions to the Cauchy problem

t
U (X)) = blu (x,t)) + jo a'(t-Tib(u, (x,T)) & + £(x,t), = < x <=, £> 0, (1.1)

u({x,0) = uo(x), “t(x'O) - u1(x), -0 ¢ x € © , (1.2)

for suitably smooth and small data Uy, vy, f. Here ¢, ¥, and a are assigned smooth

functions, subscripts x and t indicate partial differentiation, and a prime denotes the

derivative of a function of a single variable. Throughout this paper all derivatives

should be interpreted in the distributional sense. Moreover, when we speak of a solution

we always mean a classical solution.

The above problem serves as a model for the motion of an unbounded, homogeneous,

viscoelastic bar. On physical grounds, it is natural to assume that a is positive,

decreasing, and convex, with' a{t) * 0 as t + =, and that

$(0) = $(0) = 0, 4*(0) > 0, ¥'(0) > 0, ¢'(0) - a(0)P'(0) > 0 . (1.3)

We refer to our survey paper (5] for a discussion of the physical interpretation of (1.1)

and a much more complete summary of previous related work. (In addition, [5]) contains a

proof of Theorem 1.1 in the (much simpler) special case of an exponential kernel.)

Observe that if a' = 0, then (1.1) reduces to the gquasilinear wave equation

u,. = Q(ux)x + £ . (1.4)

It is well known that (1.4), (1.2) does not generally have a global (in time) smooth

*
S8ince a' (rather than a) appears in the equation of motion, a constant can be added to

the kernel a without affecting (1.1). The normalization a(x) = 0 is convenient for our
purposes. The reader is cautioned that other normaligations are also used.

1
Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
2
. This material is based upon work supported by the National Science Poundation under Grant
No. MCS-8210950.




solution, no matter how smooth and small the data are. (See, for example, (8] and [11].)

As explained in (5], the memory term in (1.1) has a damping effect if a' # 0 and the
appropriate sign conditions are satisfied. However, this dampimg mechanism is quite subtle
and globally defined smooth solutions should be expected only if the data are suitably
small.

Our main interest here is in global phenomena. If the kernel is sufficiently regular,
it is a more or less routine matter to establish local existence of solutions to (1.1),
(1.2). However, the question of securing suitable global estimates is considerably more

delicate, especially for an unbounded bar.

A ¢ A Pt 4 A=

Dafermos and Nohel (2] have established small-data global existence theorems for
analogous initial-boundary value problems corresponding to the motions of bounded
viscoelastic bhodies. (They treat Neumann, Dirichlet, and mixed conditions.) However,
their argqument makes crucial use of various Poincaré inequalities and consequently is not
applicable to (1.1), (1.2).

Equations of the form (1.1) with ¢ = ¢ have been studied by MacCamy [10], Dafermos
and Nohel {1], Staffans [16], and Hattori [4]. Small-data global existence theoremes (for
bounded and unbounded bodies) are given in [10]), [1], and {16]. Nonexistence of global
solutions for certain large data (of arbitrary smoothness) is established in [4]. (See
also (3], (12), and [14] for some related nonexistence results.) If Vy = ¢, equation
(1.1) admits certain estimates which do not carry over to the general case with ¢

$.

different from ¢. However, we know of no physical motivation for the restriction ¢

We here establish global existence and decay of classical solutions to (1.1), (1.2)
(with ¢ different from ¢), under assumptions quite similar to those used in [2] for the
case of a bounded bar. The proof combines certain estimates of Dafermos and Nohel (2]
(which remain valid for unbounded bars) with a variant of a piocedure introduced by MacCamy
in [9), [10].

As in [2], we assume

a,a',a'' e L’(o,-), a 1is strongly positive definite . (1.5)

(We note that twice continuously differentiable a with (-1)’5(3)(t) 20 for all t »>» 0,

-2-




j =0,1,2; a° # 0 are automatically strongly positive definite. See [13].) 1In addition,

we require
”~~
[5 tlattrfae <o, T2y po vzen , (1.6)

where “~ denotes the Laplace transform ana” N1 := {z€C : Re 2 > 0}. The additional

T ey -

conditions (1.6) are not terribly restrictive. (This will be discussed further at the end

of Section 2.)

~ri

Regarding ug, vy, and f, we assume

{
2 2
Y, e Lloc(n)' u&, u&', u&", uy, u;, u;' eLr(m , (1.7) ?
3
2 @ 2 :
£, fx' ft ec(lo,); L (R)) N L ({0,»); L (R)) ’ (1.8) H
3
1 2 2 2 f
feL ([0,»); L'(R)), £, £ , £ €L ([0,); L (R)) . (1.9) *
x t xt p
In order to keep things reagsonably simple, we have made our hypotheses on ¢ slightly %

stronger than necessary. Several similar conditions can be used in place of (1.9). (In
fact, we could assume that (1.8) holds and that £ is & sum of several functions each of

which satisfies a condition in the spirit of (1.9).) Finally, to measure the size of the

B Ny LR

data we define

Uglugeny) = [ a0 + ugrio? ¢ uprron? 4 u,0? ¢ win? ¢ w0 ax (1.10)

! : and

ey

P(f) = sup Jt_{fz + fi + f:}(x,t)dx
v20 (1.11)

N T DATOR A Ao

1
o @ 2 2 2 - 2, Y 2
+ Jo J__{fx N £} (x,t)axae + <1° (J_, fix,t)"ax)"2at)
Our main result is
Theorem 1.1: Assume that ¢, ¢ € ca(R) and that (1.3), (1.5), and (1.6) hold. Then,
there exists a constant M > 0 such that for every ug., Wy, and f satisfying (1.7),

(1.8), (1.9), and

-

i ‘ The symbol := indicates an equality in which the left hand side is defina2d by the right
hand side.
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2
Uoluo,u1) + P(f) < ’ (1.12)

the initial value problem (1.1), (1.2) has a unique solution u € Cz(l x [0,2)) with

a,v,u 'ux'u ,ux,u PR ’

x t xX t tt XX xxt xtt
(1.13)
u.. eco,=); t2(r) ar(lo,=); t2m) .
ttt ! !
In addition,
e Lz([o ) Lz(l)) (1.14)
Yo Uxt Bt Voo Uxext  Uxtt  Vete N ¢ ¢
2
“xx' uxt, utt + 0 in L'(R) as t + ®» , {1.15)
and
LT NYL L WL e + 0 uniformly on R as t + o (1.16)

Remark 1.1: Assumption (1.5) implies that a' € AC{0,2). There are indications that for
certain viscoelastic materials a'(t) ~ = ta-1 as t + 0, with 0 <a < 1. Recently,
Hrusa and Renardy (6] have studied equations of the form (1.1) under assumptions on a
which permit such singularities in a'. Por the case of a bounded bar, they establish
local as well as global existence theorema. For (1.1), (1.2), they have local results, but
no global results. (Again, this is due to the lack of Poincaré inequalities on all of
space.) Unfortunately, the techniques which we employ here to estimate lower order

derivatives make essential use of the assumption a'' € L‘(O,-), and consequently we

cannot handle the case when a' 1is singular.

Remark 1.2: Dafermos and Nohel (2] wention possible extensions of their results to
problems involving motions of multidimensional viscoelastic bhodies. The same comments
apply here. In particular, if the kernel is a scalar multiple of the identity, then a
straightforwvard (but tedious) modification of the proof of Theorem 1.1 can be used to
establish global existence of solutions for small data. For a three dimensional problem,

estimates on derivates of u through order 4 (rather than through order 3 as in one

dimension) would be required. However, the case of a general matrix-valued kernel A is
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considerably more complicated. It is not very hard to state implicit assumptions on A

under which global existence could he established. The dAifficulty lies in determining
simple and direct conditions on A which would guarantee that these assumptions are

satisfied.

The remaining two sections of this paper are devoted to the proof of Theorem 1.1.
Section 2 contains some preliminary material on local solutions as well as properties of
the kernel a and several related resolvent kernels. The actual proof is presented in

Section 3.

Acknowledgement: We are indebted to Professor R. L. Wheeler for some valuable suggestions

which enabled us to weaken our original assumptions on a.

2. Preliminaries

We begin by stating a local existence result for (t.1), (1.2).

lesma 2.1: Assume that ¢, ¥ € CB(‘)’ a, a', a'' e L;oc[o'-)' and that there exists a
constant ¢ > 0 such that
$'(E) > ¢ vEeRrR . (2.1)
1
Let g, Uy, and £ satisfying (1.7), (1.8), and fxt e Llo
Then, the initial value problem (1.1), (1.2) has a unique local solution u, defined on a

c([0.'); t2(R)) be given.

maximal time interval [0,T,), with

2

“x'“t'“xx'uxt'“tt'“xxx'“xxt'“xtt’“ttt e C([O,To); L (R)) . (2.2)

Moreover, if
sup j. {u2 + u2 + u2 + u2 + u2 + uz +
te[O,To) --""x t x xt tt XXX
(2.3)
2 2 2
Weee ¥ Usee * uttt}(x,t)dx <=
then Ty = =
aSa

BN o s B R

2
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Remark 2.1: The Sobolev embedding theorem and (2.2) imply u € Cz(l % [0,?0))-

The proof of Lemma 2.1 is almost identical to the proof of Theorem 2.1 of [2].
Therefore, we omit the details. The only significant difference is that certain additional
estimates are needed for lower ordexr derivatives. As far as local existence is concerned,
this causes no difficulties; one simply expresses the lower order derivatives in terms of
initial conditions and time integrals of higher order derivatives. (Of course, such a
procedure yields time-dependent bounds and cannot be used to obtain global estimates.)

The integrability properties of several resolvent kernels associated with a are
crucial to our analysis of (1.1), (1.2). Therefore, we briefly recall a few basic
concepts. let b € L;oclo,“) be given and consider the linear (scalar) Volterra equation

y(t) + [ be=tiy(riar = gte), t>0 . (2.4)
For each g € L;oc[0,°), equation (2.4) has a unique solution y € Lzoc[o,c). Moreover,
this solution is given by

y(e) = g(e) + [ pe=tig(riar, e30 , (2.5)
where p is the unique solution of the resolvent equation

p(t) + [§ ble=T)p(T)ar = -b(t), >0 . (2.6)
A clagsical theorem of Paley and Wiener states that if bh belongs to L‘(O,ﬂ). then the
resolvent kernel p bhelongs to L1(0,°) if and only if 1 + g(z) does not vanish for any
zel.

We shall also make use of several basic properties of strongly positive definite
kernels. A function a € Lgoclo,“) is said to be positive definite if

J; y(s) [ ate-Tiy(r)dras >0 wt>0 , (2.7)
for every y € C{0,#); a is called strongly positive definite if there exists a constant

C > 0 such that the function defined by a(t) - Ce™t

s, £t >0, 4is positive definite. As
the terminology suggests, strongly positive definite implies positive definite.
These definitions are generally not very easy to check directly. For our purposes

here, it is useful to know that if a belongs to L1(0,°) then a 1is strongly positive




definite if and only if there exists a constant C > 0 such that
C

Re a(iw) > VweRrR . (2.8)

w +1

Moreover, if a positive definite function is sufficiently regular then statements can be
made concerning its pointwise behavior near zero. In particular, (1.5) implies
a(o) >0 , a'(0) <0 . (2.9)
(That (1.5) implies a(0) > 0 follows easily from a(0) = s-]:_ Re ;(im)dm and (2.8). To
see that (1.5) implies a'(0) < 0, observe that 1lim mz Re ;(im) = -a'(0), as can be
verified using two integrations by parts and the n:::ann-nebesgue lemma. This limit must
be strictly positive by (2.8).) See, for example, [13] and [15] for more information on
these matters.
The kernel k defined by

$'(0)k(E) + [ a'(t=T)P'(O)k(T)dr = =¥’ (0)a'(t), €20 , (2.10)
can be used to express U, (or “xxx) in terms of u,, (or “xtt) and small correction
terms through an equation quite similar to (2.5). (The fact that the leading coefficient
in (2.10) is different from one does not affect the representation formulas (2.4), (2.5),
(2.6) in a significant way. We can simply divide through by ¢'(0) since ¢°'(0) > 0.)
Thus, if k € L’(O,'), bounds on u

{or u ) can be inferred from bounds on ey

xX xXX

{or wuy..). Using the Paley-Wiener theorem, (1.3), (1.5), and properties of strongly

positive definite kernels, one can establish

Lemma 2.2: Assume that (1.3) and (1.5) hold. Then, the solution k of (2.10) belongs to

L'0,=).

This lemma was used previously by Dafermos and Nohel. See Lemma 3.2 of [2] for the proof.
In order to simplify the formulas in Lemmas 2.3 and 2.4 below, we assume, without loss
of generality, that
a'(0) = -1 ., (2.11)

(Since a'(0) < 0, we can multiply ¥ by =-a'(0) and divide a by =-a'(0) to achieve

.o vt

J
|
z




(2.11). Such a change does not affect the assumptions of Theorem 1.1.)
Let r denote the resolvent kernel associated with =-a'', i.e. the solution of

r(e) - J; a''(t=t)r(t)dr = a'*'(t), ¢t >0 . (2.12)

It is not hard to see that r ‘ L‘(O,-), since a'(0) = -1, However, it follows from

1

(1.5) and (1.6) that r 4is the sum of a positive constant and an L '-function. More

precisely, we have

Lemma 2.3: Assume that (1.5), (1.6), and (2.11) hold. Then, the solution r of (2.12)
satisfies

r(t) = + R(t) vt >0 , (2.13)

1
a(o0)
whexre R € L‘(O,*).

Proof: PFormally taking Laplace transforms in (2.12) and using (2.13), we find, after a

simple computation that

e e e D
R(z)_&M—)—__..L.(ﬂ'zen

-a'(z)

. (2.14)

-

~ -
Since a’ does not vanish on /I, it is clear that R is locally analytic on N in the

sense of Definition 2.1 of [7) (with pl{t) = 1). Observe that for z near infinity, we

have
~ /l\l( ) 1
a z
R(z) = - . (2.15)
9 - ;T}(z) a(0)z

Thus R 1is locally analytic at infinity and R(®) = 0. Therefore, Proposition 2.3 of [7)
implies that R 1is the laplace transform of a function R € L1(0,w), and the lemma

follows easily.
It is convenient to define another kernel M by
M(t) = -fC R(s)as VE>0 . (2.16)

1
For our proof of Theorem 1.1, it is easential to know that M € L (0,2) and M(0) < 1.

Lemma 2.4: Assume that (1.5), (1.6), and (2.11) hold. Then, the kernel M defined by '




(2.12), (2.13), and (2.16) satisfies

21213 <1 .
a(0)

Meacto,=) nr'(o,#), M0) =1 - (2.17)

Proof: That M € AC[0,») is immediate. The claim concerning M(0) follows from (2.14)
P P -
and the facts that M(0) =~ R(0), a'(0) = -a(0), and a(0) > 0. To show that

M e L‘(O,‘), we proceed as in the proof of lLemma 2.3. Formally, we have

1 -~ .
tals), a(0) z e I\ {0} , (2.18)

M(g) = al{z)a(0) % -

”~~ 2 ’
-za'(z) za(0)

and it is clear that M is locally analytic on N\ {0}. 7To study the behavior of M near

zero, we rewrite (2.18) as

a(0)-a(z) _ _a(0)a(z) z e M\ {0}

M(z) = P 2~ '
za(0)a'(z) a(0)“a'(z)

. (2.19)

Using Lemma 4.3 of [7) and the second part of (1.6), we find that a{(0) - a(z) has a
locally analytic zero of order at least one at z = 0. Therefore, M(0) can be defined in
such a way that M is locally analytic on [I. Pinally, for 2z near infinity we have

1

~ - A L)
a(z)a(0) +a'(z) 1 _ _a(0)

T (2.20)
1- 872 2 a2

Ml(z) =

from which we conclude that M is locally analytic at infinity and M(®) = 0. fTherefore,
by Proposition 2.3 of [7], M is the Laplace transform of a function M € L1(0.“). and
the desired result follows easily.

Before stating the next lemma, we introduce some notation which will also be used in

1

2°c[0,°), we set

the next section. For b € L
o(w,t,b) 1= J;' S, wtx,8) J§ ble~t)wix,T)ataxds , Ve e [0,7] , (2.21)

for every T > 0 and every w € C([0,T); Lz(l))- Moreover, for T > 0 and 0 < h < T,

we define the forward difference operator Ah of stepsize h (in the time variable) by

Ahw(x,t) = w(x,t+h) - wi(x,t) , ¥xeR, t e (0,7h] (2.22)

for every w @ C([0,T]; 12(m)).




Assume that (1.5) holds. Then, there exists a constant « > 0 such that

lemma 2.5:
t > 2 - 2
Jo l w, (x,t) ax € « Jo v, (x,0)7ax + kQ(w, ,t,a)
1 (2.23)
+ « lim inf 3 Q(Ah"t’t") vte (0,T) ,
ht0 h

for every T > 0 and every w @ c'cto,my ).

Proof: We first note that (1.5) implies a(0) > 0, a € L2(0,»), and that there exists a

constant C > 0 such that
0 < Q(v,t,e) €< CQ(v,t,a) WV ¢t e [0,T] (2.24)
for every T > 0 and every v € C((0,T]; Lz(l)). where e(t) 1= o-t, t> 0. et T > 0,

he(0,7), and we c'((0,T)s L2(R)) Dbe given. The identity

t
a(0)8, wix,t) = a(t)d wix,0) + [ a(t-T)A w (x,7)ar
(2.25)

- t ' -
Jo a' (t=1)4, wix,T)dv
can easily be checked via integration by parts. Taking square Lz(l) norms in (2.25) and
integrating the result from 0 to t, we see that

a5 42, (8,w(x,8)] “axds < 3(/{ ace)Zaede{f7 Ahv(x,O)zdx}
+3 )5 7 (% ats-1)a v, (x,1)a1} 2 axds (2.26)
0 ‘-’ 0 ht ' ‘

43 5 T US arteena wix ) an) 2axes

It follows from (2.24), (2.26), and Lemma 4.2 of [16] that

2 L 2
20) [ ST, 18 wix,0)1 %axds < 307 ater’ac)e ()T 8 wix,0)%ax}
_ _ (2.21)
+ CQ(Ahvt,t,a) + CQ(Ah,v,t.a)

where C 1s a constant which depends only on properties of a. To obtain the desired

conclusion, we divide both sides of (2.27) by h? and let h¢0.
[ |

We close this section with a few remarks concerning the class of kernels which satisfy
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(1.5), (1.6). As noted in Section 1, twice continuously differentiable a which satisfy
(-113a3%¢) >0 for all t >0, 3 =0,1,2; a* § 0 are strongly positive definite.
(Corollary 2.2 of [13].) The interpretation of the integrability conditions in (1.5) ana
(1.6) is clear. It is not difficult to impose assumptions directly on a which will
guarantee that Ra':7 does not vanish on 1II.

Kernels of the form

N -ujt
a(t) := Z aje s t2>0 , (2.28)
3=1
with aj,uj >0 for 3 = t%...,N, which are commonly employed in applications of visco-

elasticity theory, satisfy (1.5), (1.6). In fact, it is not hard to show that if a

satisfies

aecio,, («na'3)y >0 wvesro, 3=0,1,2,3
(2.29)

-
ato, Jo tatt)ae <=,
then (1.5) and (1.6) hold. We remark, however, that (2.29) is by no means necessary for
(1.5) and (1.6) to hold. 1Indeed, one readily verifies that kernels of the form

a(t) := e_utCOI Bt, £t 2 0, with u positive satisfy (1.5), (1.6).

3. Proof of Theorem 1.1.
Let us define y € cs(n) by
X(E) = ¢(§) - a(0)Y(E) VEeR . (3.1)

We choose a sufficiently small positive number & and modify ¢ and ¥ (and also ¥
accordingly by (3.1)) smoothly outside the interval [~§,8] in such a way that ¢'', yp*°
(and hence also x'') vanish outside ([-26,2§] ana

$'(E) >4, V(EY> Y, X'(E)>Y VEER , (3.2)
where ¢, ¥, and )X are positive constants. (This can always be accomplished in view of

(1.3).) There is no harm in making this modification because we will show a posteriori

that qu(x,t)l <8 for all xeR, t > 0.

-11=
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By lemma 2.1, (1.1), (1.2) has a unique local solution u which satisfies (2.2) on a
saximal time interval (o,ro). We want to show that if (1.12) holds with u sufficiently
small, then (2.3) must also hoid, and hence T, = =,

Estimates for the L2(R) norms of certain derivaties of u can be derived via energy
identities. Due to the nonlinear nature of (1.1), these identities generally contain
remainder terms involving integrals over time and space of quantities which are of higher
algebraic order in derivatives of u. To draw useful conclusions from such an energy
identity we must also obtain estimates for the remainder terms. The estimation of a
remainder term often introduces new remainder terms. Therefore, the trick is to develop a
closed (or self sufficient) chain of estimates. This is an especially delicate matter here
due to the failure of Poincar® inequalities on unbounded intervals. The quantity E
defined below has been carefully constructed for this purpose.

For t € (0,T)), we set

E(t) = max [ {u: + u: + “ix + “:t + “:t + “:xx
sel(0,t]
2 2 2
+
+u Uee * uttt)(x,s)dx
(3.3)
t 2 2 2 2 2
+ + + +
J0 ]:-{“xx “xt utt “xxx M uxxt
2 2
vt “ttt}(x")dxd' .

Our objective is to show that if (1.12) holds with u sufficiently small then E remains
bounded on IO,TO). For this purpose, it is convenient to define
1
v(t) = sup (w2 + w2 4+l }/2 (x,8) vee [0,T) . (3.4)
x XX xt 0
x€R
se(0,t)
To simplify the notation, we write U, and F in place of Uo(uo,u|) and F(f), and we
use ' to denote a (possibly large) generic positive constant which can be chosen
independently of Ug, Uy, f, and T,.
As noted in Section 1, the procedure of [2] can be used to obtain estimates for

certain higher order derivativeas. In fact, an inequality of the form (3.27) below can

essentially be inferred from a careful examination of [2) and a few simple computations.
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A Por the sake of completeness (and hacause a few changes are needed), we repeat the

procedure of Dafermos and Nohel to derive (3.27).
An integration by parts in (1.1) produceas

t
u  (x,8) = xlu (x,8)) + ]o ale=T)¥(u ), (x,T)dt (3.5)

+ a(t)quxlx))x + fix,t) .
We multiply (3.5) by O(ux)xt and integrate over R x [0,t], t @ [0,T;). After several

integrations by parts, this yields

% ]:,{0'(ux)u:t + x'(ux)v'(ux)u:x}(x,e)ax +o(¥(u ) ,t,a)
1 = 2 2
-3 ]__{w'(qu)u1x + X" lug 29" (ug dug  }(x)dx

+ % !: ]:_{ﬁ"(ux)u:t - x'(ux)w"(ux)unuix

{3.6)
+ x"(ux)W'(ux)uxtu:x}(x,n)dxdn

+ j; [Z, ata)ba, (x)) ¥tu ), (x,8)axds

- I8 [0 £.9(u), (x,8)axd8 vee(0,T)
0 Jw "y Ux'e ! M

where O is defined by (2.21).

To obtain the next identity, we apply the forward difference operator Ah to (3.5)
and multiply by Ah*(“x)xt' We then integrate the resulting expression over R x [0,t],
te [0,10). After various integrations by parts, we divide by h? and let hto. The

result of this computation is




1~ 2 2 L)
2 J ¥t tudu o+ X ¥ (u Jul ke ax + ;t: 2 Q(a, ¥(u ) . t,a)

1 - 2 . 2
= Jal¥itudu o+ xtw 09t (u du ik, 0)ax

t - ..1. X 2 - X
g Jalg vrrpu ul -t e e e
2
re "y 1]
+ 9 (ux)uxxuxtuttt + X (\lxxw ‘ux)“xtu Yee

+ x"'(ux)t'(u )uz u_.u

+ X"(ux)ﬁ'(u Ju__u ot Ukt

X XX xxtuxtt

2 2 3
¢ L] -
2x '(ux)ti' (ux)uxxu L x"(ux)&"'(ux)u u F

(3.7)

a L] " 2 - 1] L ]
2 X (ux)t (“x)“xt“xxt X (ux)v (“x)“xxuxxt“xtt

2
- 1 4 4e8
X (ux)t (“x,“ u

xtuxxt}(x,iidxds

I§ o at(e)¥tug, (x))  blu,),, (x,8)dxds

+

ate) [ ((#7(ug Juy ) ()I¥(u ) (x,t)dx
- ato) [2 teertuy ) (x)12ax
a(0) J_ ey ox “1x)x *

- 15T, At L ug dCu ) (I T6Cu, ) (x,8)dxds

t e a vtel[0,T)
= Jg Joa £ V000, (x,8)axds 'Ty) .

It is not a priori evident that 1lim L Q(A_$(u ) , ,t,a) exists for t € (0,T,).
ht0 h2 h' " x'xt 0

However, the limit of each of the other terms involved in the derivation of (3.7) exists.

Consequently, the limit in question exists (and is, in fact, nonnegative.) We add (3.6) to

(3.7), and use lLemma 2.5 (with w = W(ux)x) and (3.2) to obtain a lower bound for the left

hand side. After some routine estimations on the right hand side, this yields

a 2 2 2 2 t - 2
Jalo +u, +u o+ u o Jixot)ax + Jo J o u, p(X/8)dxds
< oy + 2} + Tvie) + vie)ree) + r/S, + /7 VO (3.8)

vee [0,To) .




To give an indication of the steps involved in deriving (3.8) from (3.6) and (3.7), we
show the detalled estimation of several typical terms. The reader is cautioned that there

are many possible ways to carry out these and the numerous estimations which follow. We

note that derivatives of ¢, ¥, and X of orders one through three are bounded on R by

virtue of our modification of these functions outside (~§,8].

S

Many of the terms from (3.6) and (3.7) can be handled in a very simple manner, e.g.

t
’!0 ] 0"(:1,‘)11’“_)1’“:t ttt(x,n)dxdlf !
< sup ¥'t(uu (x,0)]e Jo J__ xttpp (X081 |axds i
xER A
s€(0,t) :
i

< Tv(t) ]: J:.quttuttt(x,l)ldxdn (3.9)

< Tv(t) Jt j__ uitt + u:et}(x,-)dxdl

< Tv(t)iE(t) vee [°IT°) .

A similar computation ylelds

t -
|J° J o fxtv(ux)tt(x,n)dxdll
< J: J:-lfxt"(“x)“xtg(*")|°‘d' + J: J:.‘f AL yo? (x,l)ldxdl
<T . (}; Lt (x,-)axa-) . (Jt " (x,-)axa.)’ (3.10)
+T 1: 1:. f:t(x.l)dxdn + T ]; ]:_ u:t(x,l)dxd-

S TVF s VE(E) + TP + Cv(t)2m(e) veeior) .

To estimate terms such as the first integral on the right hand side of (3.7), we
observe that the initial values of derivatives of u can be expressed in terms of u,

and uy by using (1.1) if necessary. For example,

2
(x,0) = 0'(ux)uxxx(x.0) + .'.(ux)“xx(x'O) * tx(x,O) . (3.11)

Therefore,

«]8a




S wd xmax <t 7 wrrrooax e v 7wl qoax o 7 f2x,00ax

< ruo + rv(:)zx(t) + TF vete [O,To) .

Of course, we could use PU: in place of Pv(t)zz(t) in (3.12). However, we already have
a Pv(t)zx(t) term in (3.10), so there is no harm in including it here. Moreover, it
simplifies matters slightly to avoid terms involving Ug.

The other calculations used to derive (3.8) (and our subsequent estimates) are in the
same spirit as those shown above. It is useful to note that (1.5) implies

a,a' e L-(O,”), and that (1.8), (1.9) imply f € Lz([O,ﬂ)a Lz(o,n)). Moreover, we have

- 2 1 2 3
Jo J o £(x,t) @xat € S F, and clearly v(t)” € v(t) + v(t)” for all t e [0,T)) .

Taking Lz(l) norms in (1.1) and squaring the result, we see that

2 2 2
o “(x srax < 3 T L'+ £ x,t)ax
(3.13)

+ 3 JT U5 atce-tav x, 1) an)%ax

from which it follows easily that

(x,t)dx < TP + T max
s€f0,t]

A similar argument gives bounds on Yppee Differentiation of (1.1) with respect to t

2 (x,s)dx vte [O,To) . (3.14)

S e | Ve

yields

uttt(x,t) = 0'(ux)u (x,t) + ¢''(u )uxtuxx(x,t) + a'(tW(uoX(x))x + ft(x,t)

+ g atte-I¥ u du L+ ¥t du e Tk, T

Squaring (3.15) and integrating over R and R x [0,t], we obtain
o

o vt I o

(x,t)dx € r(u + F} + Tv(t) n(t) + T max - Uyt

sefo0,t]

(x,8)dx

vte [0,T0) ’

j; . uc"‘"""“" < Iug + F} + Tv(t) 2p(e)

+T ]: ]:_ “ixt(x'.)dXd' vte IO'TO) .




Combining (3.8), (3.14), (3.16), and (3.17), we now have the estimate

®-c2 .2 2 2 2 2
Sl * Se * Ype * e * Upe ¥ Uere (XoEIEX

* g T, * “:tt)(x")dxd'

(3.18)
< My, + r} + T{u(e) + vierieee) + P{/F; + /F} YE(O)
vte [0,T°) .
We can obtain a bound for j ]_. :tt by interpolation. The identity
] ]_. xtt(x,l)dxds - Jo Jd_ xt Veee (X0 8)dxds
(3.19)
+ j:. VerVixt (x,0)dx = [_. e xxt(x,t)dx vte [O,To) ,

holds for all functions v having the regularity (2.2), (It is easy to give a formal
derivation of (3.19) via integration by parts. It can be established rigorously using

difference operators or a simple density argument.) BEmploying (3.19) with v = u, we see

that
t - 2
J | xtt(x,-)axd- STy, + T J {u +u  Jx,t)ax
(3.20)
t - 2 2
+T g J_,,{uxxt + o Jixeexds vee(0,T) .
To obtain an estimate for Uypxs WO set
Gix,t) := ntt(x.t) - fix,t) + [¢'(0) - 0'(ux)]uxx(x,t)
t (3.21)
[ - ] - (]
+ Jg at(e=T)07(0) - ¥'(u Nlu  (x,7)er
and observe that (1.1) can be rewritten as
$1(0)u_(x,t) + [5 a'(e-TH'(D)u_(x,1)AT = G(x,t) . (3.22)
Using the resolvent kernel k defined by (2.10), we solve (3.22) for Uy, to get
7 (0)u_(x,t) = Gx,t) + [§ xtt=tie(x, e . (3.23)
Differentiation of (3.23) with respect to x yields
t
U0 (x,8) = G (x,t) + Jo k(t-T)6 (x,T)at . (3.24)

8ince k @€ L’(o,-) (by Lemma 2,2), it follows from (3.21), (3.24), and a routine computa-
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tion, that

2
] g ul,, (x,8)ax
= e sefo,t) . *t* (3.25)

' 2 2
J o uS _(x,t)dx < TF + ['v(t)“E(t) + max

vtef(oT, ,

and
Jt j. 2 o

2
0 Jem Yyerx u (x,s)dxds

(x,8)axde < TF + To(o)’eee) + [0 (7 of

(3.26)
Vyte [O,To) .
Combining (3.18), (3.20), (3.25), and (3.26), we see that

L 2 2 2 2 2 2 2
+ + + +
J--{uxx “xt “tt “xxx “xxt + “xtt + uttt}(x't)dx

+ f: I 2 +u? o+ d? }(x,8)dxds

+ u2
- " TXXX xxt xtt ttt
(3.27)

< Mo, + ¥} + Tlu(e) + vie)dece)
+ l'{{u—o + /F} YE() vee(oT) .
It remains to obtain a similar estimate for
o . 2 2 t ° 2 2 2
J o lu + u bor,t)ax + !o ]_'_{uxx +u, tu, Hxs)dxds . (3.28)

In particular, the remainder terms must be estimable in terms of Uy, F, v(t) and E(t).
The time integral in (3.28) causes the most difficulty. As can be seen by examining the
derivation of (3.27), an estimate for this term is essential.

To proceed further, we transform (1.1) to a more convenient form involving the
resolvent kernel r defined by (2.12). This transformation was motivated by an idea of
MacCamy (9], [10]. As explained in Section 2, we assume without loss of generality that
a'(o) = -1,

Differentiating (1.1) with respect to t, we get
“ttt(x’t) = O(ux(X.t))xt - t(ux(x.t))x + J; a"(t-t)v(ux(x.T))xdT + ft(x,t) (3.29)

Solving (3.29) for t(ux)x and rearranging the terms, we obtain
uttt(x't) - ‘(“x(x't))xt ~ *(ux(x't))x + ft(x.t)

(3.30)

t
+ 10 t(t-‘)(‘(“x)xt -u + + ft](X,T)dT ’

tt




or, setting a := a(0) and using (2.13),

» -
LI +au,, = O(ux)xt + ax(ux)x + tt +af + R (‘(“x)xt LI + !t) ' (3.31)

or finally,
Yepr * OV ‘(“x)xt +axtu) + £, +at
(3.32)
+ [R'(O(ux)x “u t)lt B

where the * denotes convolution with respect to the time variable on (0,t], i.e.
(R*V) (x,8) 1= [ R(t-T)v(x,T)EOC . (3.33)
(In the above calculations, we have made use of the fact that [Q(ux)x =Y. + £}(x,0) = 0
which follows from (1.1).) Recall that a := a(0) > 0 and that R @ L‘(o,-) by Lemma
2.3,
Let us set
W(E) = Jg x(x)ds VEER , (3.34)
and note that
wik) > —xe vEeRr (3.35)
by virtue of (1.3), (3.2), and (3.34). We multiply (3.32) by ue and integrate over
Rx [0,t], as before, to get

a j_.f; “c + Wu J}(x,tidx + j; o 0'(ux)u:t(x,-)dxd-

(x,8)dxds + J¢ | [R*(4(u, ) = v, +)](x,8)dxds

'Joj- tt - Yee

- J f— au +aW(u) +au, - fu }(x,0)dx

(3.36)
+ !:-{f“t - uu o, t)ax

+ 0, u [R*(Hu ) = u + N](x,t)ax

+ J: I:.{u!ut - fu  Hx,s)dxds vee [0,T) .

Next, we multiply (3.5} by wu,, and integrate over R x [0,t). This yields




g I u tt(x,.)axd. - 15 ey JuZ, (x,8)dxds

- 1 o 1
= ] X' e u  (x,00ax = [ x'(8 )uu, (x,t)dx

t 2
+ Jo ]_.(futt + x"(ux)uxuxt}(x,a)dxda

t.
+ I J_alate)tug (x)) Ju,, (x,s)dxds

t.
+ Jo ) v, [a*¥(u ) 1(x,8)dxds vte (0,7
Adding (3.36) to (3.37), we find that

a ' t -, 2
a j_.{z ut + Wu ) Hx,t)ax + a(0) Jo [, ¥'(u Ju (x,8)dxds

+ jt

0 e u, [R*(4(u ) + £)](x,8)dxds

tt

=0, {—-au +aw(u ) +gu +x'(uluu, - fulix,0)ax

+ ]:_(fut -uu, - x'(ux)uxuxt}(x,t)dx

+ )7, u R ) - u + O] (x,t)ax

+ ]; J:.{“f“t + X"(ux)uxuit}(x,s)dxds

t @
+ ]y | fatedbiug, (x)) Ju (x,8)dxds

o
0 Jow Uy [a%¥(u ) 1(x,8)dxds vte [0,T)) .

The crucial term to analyze is

a(t) = J i [R*(d(u ) = u,, + £)](x,s)dxds .

- Yt tt

(The other terms in (3.38) are favorable or can be estimated routinely.)

and (3.5) that

O(ux)x -u, _+f= a(O)w(ux)x - a(t)'b(u(,x)x - a'W(ux)

tt xt

and substitution into (3.39) yields

~20-

(3.37)

(3.38)

(3.39)

We see from (3.1)

v (3.40)
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\
1)

*(e) = a(0) JE [T . (ReW(u) 1(x,8)dxds

t L
= Iy Ja[R®a1()0tuy (x)) u  (x,8)dxds (3.41)

- JE T u (reavwiu ) ) (x,8)axds
0 /e Yee ' xe ! (X .

Since R, a @ L‘(o,-) and we already have estimates on third order derivatives of u, the
last two terms in (3.41) cause no difficulties. However, the first term on the right hand
side of (3.41) requires special attention.
Employing the karnel M defined by (2.16), we find that
L -l
RUW(u ) = =M0)¥(u )+ Mblug )+ M%(u) . . (3.42)

Recall that M € L‘(o,-) and M(0) < 1. We observe further that

]: . v(u) u (x,8)dxds = j;' 5. "'(“x)“:t(*")dxd'

o ¥(u . (x,0)dx - ., ¥lu du  (x,t)dx (3.43)
vte (0,7 .

using integration by parts. Combining (3.41), (3.42), and (3.43), we arrive at the
following expression for &:

(x,s)dxds

s(t) = -atoim(o) Jo J2, #'(ux)u:t

+ a0) [, wlu v (x,00dx - at0) [T (u du_ (x,t)ax

(3.44)

+ 180, M- (Rt (X)) u (x,8)dxd
0 ) a)](s)¥(u, (x xUpg (Xr8)axds

4
+ Jo I:. “tt{(" - (R'l)]'ﬁ(ux)xt}(x,l)dxd- .

Since M(0) < 1, the first intagral in the above expression can be absorbed by the
second integral on the left hand side of (3.38). Moreover, the remaining terms can he
handled rather easily. (Note that (M - (Rva)) @ L‘(o,ﬁ), since M,R,a @ L‘(o,ﬂ).) After

subgtitution of (3.44) into (3.38), and a long computation, we obtain
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J:.{u +uy 2)(x,t)ax + ]o S (x,8)dxds

-.xt

< I‘(uo + F} + Tv(e)E(t)

(3.45)
+ l‘(]o J_. tt(x,l)dxd-) -(]o ]_. xxt(x")dxd')
L4 2 2 2
+T max J__{ul +ul +u  }(x,s)ax veeloT) .
se{0,t] - " Txx xt tt 0
In the derivation of (3.45), we have used the simple algebraic inequality
|aB] < ea? +1—eaz ved>o , (3.46)
to handle several terms. For example, observe that
[ ] -—
1. x'(nx)uxnxt(x,t)dtl <X J__quu t(x,t)lax
(3.47)

<ex O wdmeax + X 7 uit(x,t)dx vte (0,1

for every € > 0, where ; 1= gup |x'(€)|- On account of (3.35), t; ]: ui can be
Eem

absorbed by the first integral on the left hand side of (3.38) if € 4is sufficiently

small. The size of the coefficient %E_ is unimportant because we already have an estimate
2

for ] U, Moreover, we have made essential use of the assumption f € L‘([O,"H Lz(l))

to estimate ] 0 ]:. fut since it does not seem possible to obtain a time independent bound

t = 2
for jo .

It follows from (3.37) and a simple computation that

t 2
]o }:_ utt(x,a)dxds < I‘{Uo + F} + PV(t)E(t)

t Yo, (ot A
+r(jo I tt(x,a)dxds) (J j t(x,s)dxds)
' (3.48)
o
+T max [__ 1:t(x,s)dx
se(0,t)
t -
+T Jo Jo xt(x,s)dxdl vee(oT) .

Combining (3.45) and (3.4R), we thus obtain
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- 2

.- 2,2 t 2
Jalog + udixomyax + [0 [ J{u + ug }(x,0)axds

< r{uo + F} + Tv(t)E(t)

(3.49)
t ~ 2 \ t~ 2 7
+ P(]o ]__ utt(x,l)dxd-) 2’(10 J_. “xxt(x")dxd') 2
A 2 2 2
+ P max [ _{ul_ +u’ + ul }ix,s)axas vteloT) ,
2€[0,t) - XX xt tt 0
and using (3.46) with € aufficiently small, and (3.27),
Aad 2 2 t o 2 2 2
J-{“x +u dxe)ax + Ie Jalug + u, + ul }ix,s)axas
< Mu, + F} + Thvie) + vie) tace) (3.50)

+ r‘{v'u_o +/FH/E(t) wte o,r) .

To obtain our last estimate, we go back to (3.23), Using (3.23), (3.21), and the fact

that k € L1(0,'). we deduce that

€t = 2 2 t - 2
Jo . u(Xe8)axas € TP + Tv(0)“R(E) + T [0 [ U, (x,8)dxds
(3.51)
vVte [0,'1‘0) .
Combining (3.50) and (3.51), and adding the result to (3.27), we conclude that
E(t) < r{uo + 1)+ Tivie) + v e + r(lﬁ + /F} YE()
(3.52)
vte [o,ro) v
and using (3.46), we finally arrive at an estimate of the form
() < T‘{uo + F} + Tlve) + vie)Plece) veelor) . {3.53)

where T denotes a fixed positive constant which can be chosen independently of e Uy
£, and To.
We choose ;, ; > 0 such that
1

-— —_ [ | -— - —_
<8, T2 + 2B < 3, ®Pely . (3.56)

(Here & 1is the constant that was introduced in the first paragraph of this section.)

Suppose now that (1.12) holds with the above choice of y. It follows from the

Sobolev embedding theorem that




v(t) < /2E(t) v ee (0,7 . (3.55)
We therefore conclude from (3.53), (3.54), and (3.55) that for any t e [0,Ty) with
B(t) € E. we actually have E(t) € %-E. Congeguently, by continuity,
Ee) <3 E vee (0,1 (3.56)
provided that E(0) € %E.
We can always choose a smaller u > 0 (if necessary such that (1.12) implies
E(0) € %E. (Observe that (3.54) still holds if the size of U is reduced.) Thus, if
(1.12) is satisfied with our revised choice of u then (3.56) holds. This implies Tg ==
by Lesma 2.1. In addition, it immediately yields (1.13) and (1.14) from which (1.15) and
(1.16) follow by standard embedding inequalities. Finally, we note that
fu tx,)] < vee) < (5)1/2 <8 VvxeR t>0 . (3.57)

by (3.4), (3.55), (3.56), and (3.54). The proof of Theorem 1.1 is complete.
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